This paper presents an application of Hierarchical Systems (HS) technology in conceptual and detailed design of Brain Computer Interface (BCI) system to control a mobile robot. The BCI is a biomechatronic system that includes biological (brain), computer (control PC), electronic (sensors), visual informatics (LCD—liquid crystal display, GUI—graphic user interface) and executive electro-mechanical (MR—mobile robot) subsystems. Therefore, the conceptual model of the designed BCI system should present connected formal models of the above subsystems presented in the general systemic basis. The structure of the BCI system, its dynamic realization as a unit in its environment and MR environment are presented formally as well. In addition, the conceptual model should also take into account the BCI inter-level relations performed by MR coordinator implemented in the form of the design and control system. Therefore, HS model (and its standard block aed—ancient Greek word) is selected and described as the formal basis of the conceptual model of BCI system in the first part of the given paper. BCI system detailed design is under consideration in the second part of the paper. BCI control system and MR design results, as well as MR control process are also described in the final part of the paper.