SUMMARYFor an animal to escape an attacking predator, speed and manoeuvrability are likely to be crucial factors. Previous studies on reptiles and birds have revealed that gaining weight, due to for instance egg load or lipid accumulation, leads to impaired escape ability and possibly increases the risk of being caught by predators. Here we tested whether the flight performance of an insect, the small tortoiseshell butterfly (Aglais urticae), is affected by variations in body mass due to feeding by comparing flight performance parameters between individuals that (i) took flight spontaneously or after being subjected to a simulated predator attack and (ii) varied in flight muscle ratio (FMR: thorax mass/total body mass). The results show that butterflies that were subjected to a simulated predator attack flew at higher velocities and straighter than butterflies that were allowed to take off spontaneously. Furthermore, our study suggests, for the first time, that butterflies may experience impaired escape ability after feeding, which directly leads to a decrease in FMR; a reduction from 0.5 to 0.3 reduced escape flight velocity by about 37% at 0.5·m from the start. Finally, this study shows that FMR affects take-off angle and sinuosity, with steeper angles and more turning in butterflies with low FMR.