With the advances in reduction of propulsion related noise from aircraft, airframe noise gets more and more into focus. During approach and landing, the high-lift system of the wings becomes one major acoustic source region contributing to the overall emitted noise. One promising approach to reduce this airframe noise is to change the complete high-lift system from a classic three element slat-wing-flap configuration to a slot-less system with active blowing and droop nose. Preceding experimental investigations have shown, that such a configuration may provide a noise reduction above 2 kHz on the model scale. In the present paper both numerical and experimental investigations concerning the acoustics of a high-lift wing with droop nose and active blowing are presented. Thereby, an insight into the acoustic source mechanisms for different aerodynamic setups is provided that in the future will serve as a basis for the design of a low-noise high-lift configuration. It was found, that in principle three source mechanisms are to be considered. In the low to mid frequency domain, mostly turbulence-geometry interaction noise such as trailing edge noise, jet-nozzle interaction noise and curvature noise from the flow being bent around the flap are supposed to be the driving mechanisms. Moreover, the high frequency domain is found to be dominated by mixing noise from the high speed jet.
NomenclatureA = wing area [m 2 ] b = wing span [m] c = chord length [m] c µ = jet momentum coefficient h = height [m] m = mass flow kg s M a = Mach number p = pressure [Pa] Re = Reynolds number R s = specific gas constant J kg K T = temperature [K] U = scalar velocity magnitude m s