A Flying V aircraft is a tailless, V-shaped flying wing with two cylindrical pressurized cabins placed in the wing leading edge and two over-the-wing engines. Elevons provide longitudinal and lateral control while two tip-mounted vertical tails double as winglets. The goal of the presented study is to estimate the lift-to-drag ratio of this configuration at the cruise condition: M = 0.85, h = 13, 000m, and CL = 0.26. A vortex-lattice method is used to rapidly investigate the feasible design space, whereas an Euler solver on an unstructured grid is adopted for a more accurate wave and vortex-induced drag estimation. The profile drag is computed by an empirical method. The NASA Common Research Model is adopted as a benchmark with an estimated lift-to-drag ratio of 18.9. The three-dimensional geometry of the Flying V is generated according to a multi-level parametrization: the planform shape is parametrized with 10 variables, five wing sections are identified and described by a total of 43 parameters, while the winglet planform is defined by 3 additional variables. After a multi-fidelity design space exploration, two design approaches are investigated: a dual-step optimization, where planform and airfoil variables are subsequently varied, and a single-step optimization, where planform and airfoil variables are varied simultaneously. The highest lift-to-drag ratio is attained with the single-step optimized configuration and amounts to 23.7. It is therefore concluded that the Flying V Aircraft can have a 25% higher lift-to-drag ratio than the reference aircraft.