A nonlinear dynamic model of a two-span rotor system is constructed based on the Hamilton principle and the finite element method. The Musznyska model and the short bearing model are employed to describe the nonlinear seal force and oil-film force. The fourth-order Runge-Kutta method is used to calculate the numerical solutions. The bifurcation diagrams, time-history diagrams, phase trajectories, and Poincare maps are presented to analyze the dynamic behavior of the bearing center and the disk center in the horizontal direction. The numerical results indicate that the rotational speed, the nonlinear seal force, the oil-film force, and the stiffness of the coupling have a significant effect on the stability of the rotor system. The dynamic behavior of the two-span rotor system is more complicated when impacted by the nonlinear seal force and oil-film force.