Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
SummaryThis paper presents an approach to develop high‐order, temporally accurate, finite element approximations of fluid‐structure interaction (FSI) problems. The proposed numerical method uses an implicit monolithic formulation in which the same implicit Runge–Kutta (IRK) temporal integrator is used for the incompressible flow, the structural equations undergoing large displacements, and the coupling terms at the fluid‐solid interface. In this context of stiff interaction problems, the fully implicit one‐step approach presented is an original alternative to traditional multistep or explicit one‐step finite element approaches. The numerical scheme takes advantage of an arbitrary Lagrangian–Eulerian formulation of the equations designed to satisfy the geometric conservation law and to guarantee that the high‐order temporal accuracy of the IRK time integrators observed on fixed meshes is preserved on arbitrary Lagrangian–Eulerian deforming meshes. A thorough review of the literature reveals that in most previous works, high‐order time accuracy (higher than second order) is seldom achieved for FSI problems. We present thorough time‐step refinement studies for a rigid oscillating‐airfoil on deforming meshes to confirm the time accuracy on the extracted aerodynamics reactions of IRK time integrators up to fifth order. Efficiency of the proposed approach is then tested on a stiff FSI problem of flow‐induced vibrations of a flexible strip. The time‐step refinement studies indicate the following: stability of the proposed approach is always observed even with large time step and spurious oscillations on the structure are avoided without added damping. While higher order IRK schemes require more memory than classical schemes (implicit Euler), they are faster for a given level of temporal accuracy in two dimensions. Copyright © 2015 John Wiley & Sons, Ltd.
SummaryThis paper presents an approach to develop high‐order, temporally accurate, finite element approximations of fluid‐structure interaction (FSI) problems. The proposed numerical method uses an implicit monolithic formulation in which the same implicit Runge–Kutta (IRK) temporal integrator is used for the incompressible flow, the structural equations undergoing large displacements, and the coupling terms at the fluid‐solid interface. In this context of stiff interaction problems, the fully implicit one‐step approach presented is an original alternative to traditional multistep or explicit one‐step finite element approaches. The numerical scheme takes advantage of an arbitrary Lagrangian–Eulerian formulation of the equations designed to satisfy the geometric conservation law and to guarantee that the high‐order temporal accuracy of the IRK time integrators observed on fixed meshes is preserved on arbitrary Lagrangian–Eulerian deforming meshes. A thorough review of the literature reveals that in most previous works, high‐order time accuracy (higher than second order) is seldom achieved for FSI problems. We present thorough time‐step refinement studies for a rigid oscillating‐airfoil on deforming meshes to confirm the time accuracy on the extracted aerodynamics reactions of IRK time integrators up to fifth order. Efficiency of the proposed approach is then tested on a stiff FSI problem of flow‐induced vibrations of a flexible strip. The time‐step refinement studies indicate the following: stability of the proposed approach is always observed even with large time step and spurious oscillations on the structure are avoided without added damping. While higher order IRK schemes require more memory than classical schemes (implicit Euler), they are faster for a given level of temporal accuracy in two dimensions. Copyright © 2015 John Wiley & Sons, Ltd.
The vibrations of plate structures placed in a supersonic flow was considered. The undisturbed fluid flow was parallel to the plate. This type of problem is especially important in the aerospace industry, where it is named panel flutter. It has been noticed for a long time that panel flutter may be problematic at high speeds. In this article, two specific problems were treated: in the first one, the plate was in the form of an infinite strip and the flow was in the direction of its finite length. Rigid walls indefinitely extended from the sides of the plate. In the second problem, the plate was a finite rectangle and the flow was parallel to one of its sides. The rest of the plane of the rectangle was again rigid. The first problem was a limiting case of the second problem. The flow was modeled by piston theory, which assumes that the fluid pressure on the plate is proportional to its local slope. This approximation is widely used at high speeds (supersonic speeds in the range of M > 1), and reduces the interaction between the fluid flow and the vibrations of the plate to an additional term in the vibration equation. The resulting problem can be solved by assumed mode methods. In this study, the solution was also found by using the collocation method. The contribution of this study is the correlation between the flutter velocity and the other parameters of the plate. The main result is the flutter velocity of the free fluid flow under which the plate vibrations become unstable. Finally, simple expressions are proposed between the various non-dimensional parameters that allows for the quick estimation of the flutter velocity. These simple expressions were deduced by least squares fits to the computed flutter velocities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.