The Kathmandu valley experiences an average wintertime
PM1 concentration of ∼100 μg m–3 and
daily peaks over 200 μg m–3. We present ambient
nonrefractory PM1 chemical composition, and concentration
measured by a mini aerosol mass spectrometer (mAMS) sequentially at
Dhulikhel (on the valley exterior), then urban Ratnapark, and finally
suburban Lalitpur in winter 2018. At all sites, organic aerosol (OA)
was the largest contributor to combined PM1 (C-PM1) (49%) and black carbon (BC) was the second largest contributor
(21%). The average background C-PM1 at Dhulikhel was 48
μg m–3; the urban enhancement was 120% (58
μg m–3). BC had an average of 6.1 μg
m–3 at Dhulikhel, an urban enhancement of 17.4 μg
m–3. Sulfate (SO4) was 3.6 μg m–3 at Dhulikhel, then 7.5 μg m–3 at Ratnapark, and 12.0 μg m–3 at Lalitpur
in the brick kiln region. Chloride (Chl) increased by 330 and 250%
from Dhulikhel to Ratnapark and Lalitpur on average. Positive matrix
factorization (PMF) identified seven OA sources, four primary OA sources,
hydrocarbon-like (HOA), biomass burning (BBOA), trash burning (TBOA),
a sulfate-containing local OA source (sLOA), and three secondary oxygenated
organic aerosols (OOA). OOA was the largest fraction of OA, over 50%
outside the valley and 36% within. HOA (traffic) was the most prominent
primary source, contributing 21% of all OA and 44% of BC. Brick kilns
were the second largest contributor to C-PM1, 12% of OA,
33% of BC, and a primary emitter of aerosol sulfate. These results,
though successive, indicate the importance of multisite measurements
to understand ambient particulate matter concentration heterogeneity
across urban regions.