Gas turbines are critical components of combined-cycle power plants because they influence the power output and overall efficiency. However, gas-turbine blades are susceptible to damage when operated under high-pressure, high-temperature conditions. This reduces gas-turbine performance and increases the probability of power-plant failure. This study compares the effects of rotor-blade damage at different locations on their aerodynamic behavior and heat-transfer properties. To this end, we considered five cases: a reference case involving a normal rotor blade and one case each of damage occurring on the pressure and suction sides of the blades’ near-tip and midspan sections. We used the Reynolds-averaged Navier-Stokes equation coupled with the k − ω SST γ turbulence model to solve the problem of high-speed, high-pressure compressible flow through the GE-E3 gas-turbine model. The results reveal that the rotor-blade damage increases the heat-transfer coefficients of the blade and vane surfaces by approximately 1% and 0.5%, respectively. This, in turn, increases their thermal stresses, especially near the rotor-blade tip and around damaged locations. The four damaged-blade cases reveal an increase in the aerodynamic force acting on the blade/vane surfaces. This increases the mechanical stress on and reduces the fatigue life of the blade/vane components.