In recent years, several ideas to apply electromagnetic launch technology to spaceflight applications have come up. The use of electric energy to propel a payload carrier promises savings of propellant and, therefore, cost reduction for the transfer to orbit. Previous studies mostly comprised a rough estimation of the launcher and the vehicle size. Sometimes, a v-budget is given to illustrate the energy expenditure. Some studies neglect the necessity of a rocket engine. Only by means of an electromagnetic launch, without the capability to maneuver reaching an orbit is not achievable. In addition to a propulsion system, an attitude control system and a flight controller are needed to bring the vehicle into a circular orbit. The high acceleration and high velocities at low altitudes have set high demands on the payload-carrying vehicle. Its structure has to withstand the high acceleration forces during launch and the tremendous aerodynamic heat fluxes during ascent through the dense atmosphere. This paper presents a vehicle concept that addresses all these demands. The vehicle consists of a two-stage hybrid rocket engine system, a thermal protection system (TPS), and high-test peroxide monopropellant thrusters for an attitude control system and a guidance, navigation, and control system. A simulation model is created, which consists of a 6-DOF flight mechanics module, an aerodynamic module, propulsion module, TPS simulation, as well as a guidance and flight control simulation. Therefore, the complete ascent with all its aspects can be simulated. The simulation results show that a 710-kg vehicle launched with 2586 g and an initial velocity of 3642 m/s can carry 31.5 kg of payload into a 300-km circular orbit. The configuration of the vehicle can be defined by a set of input parameters. This allows the use of the model within an optimization tool.