We screened the electronic records of 2,799 patients admitted in Tongji Hospital from January 10th to February 18th, 2020. There were 375 discharged patients including 201 survivors. We built a prognostic prediction model based on XGBoost machine learning algorithm and then tested 29 patients (included 3 patients from other hospital) who were cleared after February 19th.
Results:The mean age of the 375 patients was 58.83 years old with 58.7% of males. Fever was the most common initial symptom (49.9%), followed by cough (13.9%), fatigue (3.7%), and dyspnea (2.1%). Our model identified three key clinical features, i.e., lactic dehydrogenase (LDH), lymphocyte and High-sensitivity C-reactive protein (hs-CRP), from a pool of more than 300 features. The clinical route is simple to check and can precisely and quickly assess the risk of death. Therefore, it is of great clinical significance. : medRxiv preprint
Conclusion:The three indices-based prognostic prediction model we built is able to predict the mortality risk, and present a clinical route to the recognition of critical cases from severe cases. It can help doctors with early identification and intervention, thus potentially reducing mortality.