2022
DOI: 10.3233/faia220384
|View full text |Cite
|
Sign up to set email alerts
|

Affective Analysis and Visualization from Posted Text, Replies, and Images for Analysis of Buzz Factors

Abstract: In this study, we propose a method to visualize the factors that contribute to the buzz phenomenon triggered by Twitter posts. The analysis included tweets, images, and replies. Replies are after-the-fact responses posted in response to a posted tweet and therefore cannot be used to predict buzz phenomena. Therefore, they cannot be used to predict the buzz phenomena. In this study, the tweet body, images, and reply text were feature vectors, and an affective analysis model was constructed. Visualization of the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?