Emotion recogonition on text has wide applications. In this study we propose a method of emotion recognition at sentence level based on a relative large emotion annotation corpus (Ren-CECps). From this corpus, we get the emotion lexicons for the eight basic emotions (expect, joy, love, surprise, anxiety, sorrow, angry and hate). Statistics show that the emotion lexicons derived from Ren-CECps are used more often in real use of language for emotional expressions than HOWNET sentimental lexicons. Kernel methods are state-of-the-art for solving machine learning problems. Polynomial kernel (PK) method is used to compute the similarities between sentences and the eight emotion lexicons. Then the experiential knowledge derived from Ren-CECps is used to recognize whether the eight emotion categories are present in a sentence. This method obtain 62.7% F-measure.