The aim of the paper is to study some dynamic aspects coming from a tangent form, i.e. a time dependent differential form on a tangent bundle. The action on curves of a tangent form is natural associated with that of a second order Lagrangian linear in accelerations, while the converse association is not unique. An equivalence relation of tangent form, compatible with gauge equivalent Lagrangians, is considered. We express the Euler-Lagrange equation of the Lagrangian as a second order Lagrange derivative of a tangent form, considering controlled and higher order tangent forms. Hamiltonian forms of the dynamics generated are given, extending some quantization formulas given by Lukierski, Stichel and Zakrzewski. Using semi-sprays, local solutions of the E-L equations are given in some special particular cases.