Abstract"iocatalysis offers green and clean solutions to chemical processes and is emerging as an effective alternative to chemical technology. The chemical processes are now carried out by biocatalysts enzymes which are essential components of all biological systems. However, the utility of enzymes is not naive to us, as they have been a vital part of our lives from immemorial times. Their use in fermentation processes like wine and beer manufacture, vinegar production, and bread making has been practised for several decades. However, a commercial breakthrough happened during the middle of the th century with the first commercial protease production. Since then, due to the development of newer industries, the enzyme industry has not only seen a remarkable growth but has also matured with a technology-oriented perspective. Commercially available enzymes are derived from plants, animals, and microorganisms. However, a major fraction of enzymes are chiefly derived from microbes due to their ease of growth, nutritional requirements, and low-cost downstream processing. In addition, enzymes with new physical and physiological characteristics like high productivity, specificity, stability at extreme conditions, low cost of production, and tolerance to inhibitors are always the most sought after properties from an industrial standpoint. To meet the increasing demand of robust, high-turnover, economical, and easily available biocatalysts, research is always channelized for novelty in enzyme or its source or for improvement of existing enzymes by engineering at gene and protein levels. The novel actinobacteria and their industrially important enzymes will assist effective productivity and fulfill the requirements of industries.