FcR provides a critical link between ligands and effector cells in immune complex diseases. Emerging evidence reveals that angiotensin (Ang)II exerts a wide variety of cellular effects and contributes to the pathogenesis of inflammatory diseases. In anti-glomerular basement membrane Ab-induced glomerulonephritis (GN), we have previously noted that FcR-deficient mice (γ−/−) surviving from lethal initial damage still developed mesangial proliferative GN, which was drastically prevented by an AngII type 1 receptor (AT1) blocker. We further examined the mechanisms by which renin-Ang system (RAS) participates in this immune disease. Using bone marrow chimeras between γ−/− and AT1−/− mice, we found that glomerular injury in γ−/− mice was associated with CD4+ T cell infiltration depending on renal AT1-stimulation. Based on findings in cutaneous delayed-type hypersensitivity, we showed that AngII-activated renal resident cells are responsible for the recruitment of effector T cells. We next examined the chemotactic activity of AngII-stimulated mesangial cells, as potential mechanisms coupling RAS and cellular immunity. Chemotactic activity for T cells and Th1-associated chemokine (IFN-γ-inducible protein-10 and macrophage-inflammatory protein 1α) expression was markedly reduced in mesangial cells from AT1−/− mice. Moreover, this activity was mainly through calcineurin-dependent NF-AT. Although IFN-γ-inducible protein-10 was NF-κB-dependent, macrophage-inflammatory protein 1α was dominantly regulated by NF-AT. Furthermore, AT1-dependent NF-AT activation was observed in injured glomeruli by Southwestern histochemistry. In conclusion, our data indicate that local RAS activation, partly via the local NF-AT pathway, enhances the susceptibility to T cell-mediated injury in anti-glomerular basement membrane Ab-induced GN. This novel mechanism affords a rationale for the use of drugs interfering with RAS in immune renal diseases.