AT-rich repetitive DNA sequences become late replicating during cell differentiation. Replication timing is not correlated with LINE density in human cells (Ryba et al. 2010). However, short and properly spaced runs of oligo dA or dT present in nuclear matrix attachment regions (MARs) of the genome are good candidates for elements of AT-rich repetitive late replicating DNA. MAR attachment to the nuclear matrix is negatively regulated by chromatin binding of H1 histone, but this is counteracted by H1 phosphorylation, high mobility group proteins or, indirectly, core histone acetylation. Fewer MAR attachments correlates positively with longer average DNA loop size, longer replicons and an increase of late replicating DNA.