2020
DOI: 10.48550/arxiv.2010.14289
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Affordance as general value function: A computational model

Abstract: General value functions (GVFs) in the reinforcement learning (RL) literature are long-term predictive summaries of the outcomes of agents following specific policies in the environment. Affordances as perceived valences of action possibilities may be cast into predicted policy-relative goodness and modelled as GVFs. A systematic explication of this connection shows that GVFs and especially their deep learning embodiments (1) realize affordance prediction as a form of direct perception, (2) illuminate the funda… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 67 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?