Achieving antitumor immunotherapy based on hybridization of multiple types of inactivated cells has attracted a lot of attention. However, the hybridized cells of disordered structure could result in the shedding of antigens and their transfer to immune cells, which suppresses tumor immunity through trogocytosis. Here, we report a strategy for in situ solidification of tumor whole cell by biomineralization for sustained stimulation of antitumor immunity. The near-infrared light was used to accelerate the breaking of Au=P bonds in auranofin, and the exposed Au atoms biomineralize at the secondary structure (β-corner) of the protein to form Au nanocrystals with in situ protein coronas in tumor cells. Au nanocrystals are anchored to the tumor cells through protein coronas, which fixes the morphology and antigens of whole tumor cells, rendering them physiologically inactive. Interestingly, this solidified tumor cell prevents immune cells from undergoing trogocytosis, which inhibits proximal and distal tumor growth. Thus, this study presents the strategy of solidified cells and its potential application in tumor immunotherapy.