In order to clarify the origin of aftershocks, we precisely analyze the hypocenters and focal mechanisms of the aftershocks following the 2000 Western Tottori Earthquake, which occurred in the western part of Japan, using data from dense seismic observations. We investigate whether aftershocks occur on the mainshock fault plane on which coseismic slip occurred or they represent the rupture of fractures surrounding the mainshock fault plane. Based on the hypocenter distribution of the aftershocks, the subsurface fault structure of the mainshock is estimated using principal component analysis. As a result, we can obtain the detail fault structure composed of 8 best-fit planes. We demonstrate that the aftershocks around the mainshock fault are distributed within zones of 1.0-1.5 km in thicknesses, and their focal mechanisms are significantly diverse. This result suggests that most of the aftershocks represent the rupture of fractures surrounding the mainshock fault rather than the rerupture of the mainshock fault. The aftershocks have a much wider zone compared with the exhumed fault zone in field observations, suggesting that many aftershocks occur outside the fault damage zone. We find that most aftershocks except in and around the large-slip region are well explained by coseismic stress changes. These results suggest that the thickness of the aftershock distribution may be controlled by the stress changes caused by the heterogeneous slip distribution during the mainshock. The aftershock is also distributed within a much wider zone than the hypocenter distribution observed in swarm activity in the geothermal region, which is thought to be caused by the migration of hydrothermal fluid. This result implies a difference in generation processes: Stress changes due to the mainshock contribute primarily to the occurrence of aftershocks, whereas earthquake swarms in the geothermal region are caused by fluid migration within the localized zone.