Surface-enhanced Raman scattering (SERS), as an important tool for interface research, occupies a place in the field of molecular detection and analysis due to its extremely high detection sensitivity and fingerprint characteristics. Substantial efforts have been put into the improvement of the enhancement factor (EF) by way of modifying SERS substrates. Recently, MoS2 has emerged as one of the most promising substrates for SERS, which is also exploited as a complementary platform on the conventional metal SERS substrates to optimize the properties. In this minireview, the fundamentals of MoS2-related SERS are first explicated. Then, the synthesis, advances and applications of MoS2-based substrates are illustrated with special emphasis on their practical applications in food safety, biomedical sensing and environmental monitoring, together with the corresponding challenges. This review is expected to arouse broad interest in nonplasmonic MoS2-related materials along with their mechanisms, and to promote the development of SERS studies.