This study investigated the age-dependent injury response of diffuse traumatic axonal injury (TAI) and regional subdural and subarachnoid intracranial hemorrhage (ICH) in two pediatric age groups using a porcine head injury model. Fifty-five 5-day-old and 40 four-week-old piglets-which developmentally correspond to infants and toddlers, respectivelyunderwent either a sham injury or a single rapid non-impact rotational injury in the sagittal plane and were grouped by post-TBI survival time (sham, 3-8 h, one day, 3-4 days, and 5-6 days). Both age groups exhibited similar initial levels of ICH and a significant reduction of ICH over time ( p < 0.0001). However, ICH took longer to resolve in the five-day-old age group. At 5-6 days post-injury, ICH in the cerebrum had returned to sham levels in the four-week-old piglets, while the five-day-olds still had significantly elevated cerebral ICH ( p = 0.012). Both ages also exhibited similar resolution of axonal injury with a peak in TAI at one day post-injury ( p < 0.03) and significantly elevated levels even at 5-6 days after the injury ( p < 0.008), which suggests a window of vulnerability to a second insult at one day post-injury that may extend for a prolonged period of time. However, five-day-old piglets had significantly more TAI than four-week-olds overall ( p = 0.016), which presents some evidence for an increased vulnerability to brain injury in this age group. These results provide insight into an optimal window for clinical intervention, the period of increased susceptibility to a second injury, and an age dependency in brain injury tolerance within the pediatric population.