Many recent findings suggest that the nervous system has efferent effects on bone. A putative role of the sensory innervation has been assessed by using a synchronised rat model of bone resorption after treating adult animals with the neurotoxin capsaicin. Fourteen days after capsaicin treatment (50 mg kg−1) the right maxillary molars were extracted to activate a wave of resorption along the mandibular cortex. The rats were killed 4 days later (i.e. at the peak of resorption in this model), and their right mandibles were processed for histometric evaluation of resorption along the cortex and of calcitonin gene‐related peptide (CGRP)‐ and substance P (SP)‐immunoreactive (IR) fibres in the dental pulp. CGRP‐IR and SP‐IR fibres were significantly reduced in numbers by the capsaicin treatment (by 58 and 49%, respectively), confirming the success of sensory denervation. The resorption surface was significantly reduced (P < 0.005) versus the sham‐treated animals. Although the size of the osteoclast population recruited in the site was not modified, the number of actively resorbing osteoclasts was significantly reduced (P < 0.03). However, the activity of the resorbing cells was not modified. Non‐specific esterase‐positive osteoclast precursors were also significantly few after capsaicin treatment. These data show that the sensory nervous system is involved in the control of bone resorption at two different levels: (1) in the recruitment of osteoclast precursors, and (2) in regulating the access of recruited cells to the bone surface.