Rotavirus infections cause diarrhea and vomiting that can lead to severe dehydration. Despite extensive tissue damage and cell death, the inflammatory response is very limited. The focus of this thesis was to study pathophysiological mechanisms behind diarrhea and vomiting during rotavirus infection and also to investigate the mechanism behind the limited inflammatory response. An important discovery in this thesis was that rotavirus infection and the rotavirus toxin NSP4 stimulate release of the neurotransmitter serotonin from intestinal sensory enterochromaffin cells, in vitro and ex vivo. Interestingly, serotonin is known to be a mediator of both diarrhea and vomiting. Moreover, mice pups infected with rotavirus responded with central nervous system (CNS) activation in brain structures associated with vomiting, thus indicating a cross-talk between the gut and brain in rotavirus disease. Our finding that rotavirus infection activates the CNS led us to address the hypothesis that rotavirus infection not only activates the vagus nerve to stimulate vomiting, but also suppresses the inflammatory response via the cholinergic anti-inflammatory pathway, both of which are mediated by activated vagal afferent nerve signals into the brain stem. We found that mice lacking an intact vagus nerve, and mice lacking the α7 nicotine acetylcholine receptor (nAChR), being involved in cytokine suppression from macrophages, responded with a higher inflammatory response. Moreover, stimulated cytokine release from macrophages, by the rotavirus toxin NSP4, could be attenuated by nicotine, an agonist of the α7 nAChR. Thus, it seems most reasonable that the cholinergic anti-inflammatory pathway contributes to the limited inflammatory response during rotavirus infection. Moreover, rotavirus-infected mice displayed increased intestinal motility at the onset of diarrhea, which was not associated with increased intestinal permeability. The increased motility and diarrhea in infant mice could be attenuated by drugs acting on the enteric nervous system, indicating the importance and contribution of nerves in the rotavirus mediated disease. In conclusion, this thesis provides further insight into the pathophysiology of diarrhea and describe for the first time how rotavirus and host cross-talk to induce the vomiting reflex and limit inflammation. Results from these studies strongly support our hypothesis that serotonin and activation of the enteric nervous system and CNS contributes to diarrhea, vomiting and suppression of the inflammatory response in rotavirus disease