Age-related hearing loss (AHL), known as presbycusis, is a universal feature of mammalian aging and is the most common sensory disorder in the elderly population. The molecular mechanisms underlying AHL are unknown, and currently there is no treatment for the disorder. Here we report that C57BL/6J mice with a deletion of the mitochondrial pro-apoptotic gene Bak exhibit reduced age-related apoptotic cell death of spiral ganglion neurons and hair cells in the cochlea, and prevention of AHL. Oxidative stress induces Bak expression in primary cochlear cells, and Bak deficiency prevents apoptotic cell death. Furthermore, a mitochondrially targeted catalase transgene suppresses Bak expression in the cochlea, reduces cochlear cell death, and prevents AHL. Oral supplementation with the mitochondrial antioxidants ␣-lipoic acid and coenzyme Q 10 also suppresses Bak expression in the cochlea, reduces cochlear cell death, and prevents AHL. Thus, induction of a Bak-dependent mitochondrial apoptosis program in response to oxidative stress is a key mechanism of AHL in C57BL/6J mice.aging ͉ antioxidant ͉ cochlea ͉ oxidative stress ͉ presbycusis A ge-related hearing loss (AHL), also known as presbycusis, is characterized by an age-dependent decline of auditory function associated with loss of sensory hair cells, spiral ganglion (SG) neurons, and stria vascularis cells in the cochlea of the inner ear (1, 2). Hair cells and SG neurons do not regenerate in mammals, and loss of these long-lived cochlear cells leads to permanent hearing impairment. AHL affects more than 40% of people greater than 65 years of age in the United States (1, 2) and is projected to afflict more than 28 million Americans by 2030 (1, 3