Although an object-based account of auditory attention has become an increasingly popular model for understanding how temporally overlapping sounds are segregated, relatively little is known about the cortical circuit that supports such ability. In the present study, we applied a beamformer spatial filter to magnetoencephalography (MEG) data recorded during an auditory paradigm that used inharmonicity to promote the formation of multiple auditory objects. Using this unconstrained, data-driven approach, the evoked field component linked with the perception of multiple auditory objects (i.e., the objectrelated negativity; ORNm), was found to be associated with bilateral auditory cortex sources that were distinct from those coinciding with the P1m, N1m, and P2m responses elicited by sound onset. The right hemispheric ORNm source in particular was consistently positioned anterior to the other sources across two experiments. These findings are consistent with earlier proposals of multiple auditory object detection being associated with generators in the auditory cortex and further suggest that these neural populations are distinct from the long latency evoked responses reflecting the detection of sound onset.
Research highlightsThe ORN is an evoked response that indexes perceptual parsing of concurrent sounds. Using ER-SAM source imaging, the ORN generator was localized. The ORN generator in the right hemisphere was spatially distinct (anterior) from the P1m, N1m, and P2m sources. Distinct neural events index sound onset and concurrent sound segregation.