Word count abstract: 249/250 | Main text: 3810/4000 Number of Figures 2 | Tables: 1 | Supplementary information: 1 document Abstract (249/250 words)Background: Schizophrenia (SZ) and bipolar disorders (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, BD, and healthy controls across 10 cohorts.Methods: We trained six cross-validated models using different combinations of DTI data from 927 healthy controls (HC, 18-94 years), and applied the models to the test sets including 648 SZ (18-66 years) patients, 185 BD patients (18-64 years), and 990 HC (17-68 years), estimating brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results.Results: 10-fold cross-validation revealed high accuracy for all models. Compared to controls, the model including all feature sets significantly over-estimated the age of patients with SZ (d=-.29) and BD (d=.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy (FA) based models showed larger group differences than the models based on other DTI-derived metrics.Conclusions: Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.