Ageing-related changes in grey matter result in changes in the intensity and topography of sleep neural activity. However, it is unclear whether these findings can be explained by ageing-related differences in sleep pressure or circadian influence. The current study used high-density electroencephalography to assess how grey matter volume differences between young and older adults mediate and moderate neuroscillatory activity differences during a midday nap following a motor sequencing task. Delta, theta, and sigma amplitude were reduced in older relative to young adults, especially over frontocentral scalp, leading to increases in relative delta frontality and relative sigma lateral centroposteriority. Delta reductions in older adults were mediated by grey matter loss in frontal medial cortex, primary motor cortex, thalamus, caudate, putamen, and pallidum, and were moderated by putamen grey matter volume.