Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background QT interval as an indicator of ventricular repolarization is a clinically important parameter on an electrocardiogram (ECG). QT prolongation predisposes individuals to different ventricular arrhythmias and sudden cardiac death. The current study aimed to identify the best heart rate corrected QT interval for a non-hospitalized Iranian population based on cardiovascular mortality. Methods Using Fasa PERSIAN cohort study data, this study enrolled 7071 subjects aged 35–70 years. Corrected QT intervals (QTc) were calculated by the QT interval measured by Cardiax® software from ECGs and 6 different correction formulas (Bazett, Fridericia, Dmitrienko, Framingham, Hodges, and Rautaharju). Mortality status was checked using an annual telephone-based follow-up and a minimum 3-year follow-up for each participant. Bland–Altman, QTc/RR regression, sensitivity analysis, and Cox regression were performed in IBM SPSS Statistics v23 to find the best QT. Also, for calculating the upper and lower limits of normal of different QT correction formulas, 3952 healthy subjects were selected. Results In this study, 56.4% of participants were female, and the mean age was 48.60 ± 9.35 years. Age, heart rate in females, and QT interval in males were significantly higher. The smallest slopes of QTc/RR analysis were related to Fridericia in males and Rautaharju followed by Fridericia in females. Thus, Fridericia’s formula was identified as the best mathematical formula and Bazett’s as the worst in males. In the sensitivity analysis, however, Bazett’s formula had the highest sensitivity (23.07%) among all others in cardiac mortality. Also, in the Cox regression analysis, Bazett’s formula was better than Fridericia’s and was identified as the best significant cardiac mortality predictor (Hazard ratio: 4.31, 95% CI 1.73–10.74, p value = 0.002). Conclusion Fridericia was the best correction formula based on mathematical methods. Bazett’s formula despite its poorest performance in mathematical methods, was the best one for cardiac mortality prediction. Practically, it is suggested that physicians use QTcB for a better evaluation of cardiac mortality risk. However, in population-based studies, QTcFri might be the one to be used by researchers.
Background QT interval as an indicator of ventricular repolarization is a clinically important parameter on an electrocardiogram (ECG). QT prolongation predisposes individuals to different ventricular arrhythmias and sudden cardiac death. The current study aimed to identify the best heart rate corrected QT interval for a non-hospitalized Iranian population based on cardiovascular mortality. Methods Using Fasa PERSIAN cohort study data, this study enrolled 7071 subjects aged 35–70 years. Corrected QT intervals (QTc) were calculated by the QT interval measured by Cardiax® software from ECGs and 6 different correction formulas (Bazett, Fridericia, Dmitrienko, Framingham, Hodges, and Rautaharju). Mortality status was checked using an annual telephone-based follow-up and a minimum 3-year follow-up for each participant. Bland–Altman, QTc/RR regression, sensitivity analysis, and Cox regression were performed in IBM SPSS Statistics v23 to find the best QT. Also, for calculating the upper and lower limits of normal of different QT correction formulas, 3952 healthy subjects were selected. Results In this study, 56.4% of participants were female, and the mean age was 48.60 ± 9.35 years. Age, heart rate in females, and QT interval in males were significantly higher. The smallest slopes of QTc/RR analysis were related to Fridericia in males and Rautaharju followed by Fridericia in females. Thus, Fridericia’s formula was identified as the best mathematical formula and Bazett’s as the worst in males. In the sensitivity analysis, however, Bazett’s formula had the highest sensitivity (23.07%) among all others in cardiac mortality. Also, in the Cox regression analysis, Bazett’s formula was better than Fridericia’s and was identified as the best significant cardiac mortality predictor (Hazard ratio: 4.31, 95% CI 1.73–10.74, p value = 0.002). Conclusion Fridericia was the best correction formula based on mathematical methods. Bazett’s formula despite its poorest performance in mathematical methods, was the best one for cardiac mortality prediction. Practically, it is suggested that physicians use QTcB for a better evaluation of cardiac mortality risk. However, in population-based studies, QTcFri might be the one to be used by researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.