Both aging and age-associated neurodegenerative diseases are associated with various degrees of behavioral impairments, and among the prime candidates responsible for producing the neuronal changes mediating these behavioral deficits appear to be free radicals and the oxidative stress they generate. Therefore, there have been a number of studies which have examined the putative positive benefits of antioxidants in altering, reversing, or forestalling these neuronal/behavioral decrements, with varying degrees of success. Additional experiments have examined the effects of diets rich in fruits and vegetables or herbal extracts in reducing certain types of cancer and cardiovascular diseases, and evidence emerging from such experiments suggests that these kinds of dietary modifications may be beneficial in altering neuronal/behavioral deficits in aging, as well. These kinds of diets are particularly rich in antioxidants such as vitamins A, C, E, and bioflavonoids (such as flavones, tannins, and anthocyanins), and thus, there may be synergistic effects among them. The present paper will review studies concerning the influence of dietary and synthetic antioxidants on normal, pathological age-related, and reactive oxygen species-induced behavioral changes in human and animal subjects. The antioxidants reviewed are vitamin E, alpha-lipoic acid, and the phytochemicals contained in herbals, fruits and vegetables.