Behavior is autonomous, convergent, and uncertain, which brings challenges to the modeling of social network behavior spread. In this article, we propose a behavior spread model based on group cohesion under uncertain environments. First, for behavioral convergence, we define group cohesion to quantify the convergent effects of group. Second, based on the game theory to model the autonomy of behavior, according to the characteristics of the game payoffs changing with time and the depth of spread, and integrating group cohesion, a dynamic game payoffs calculation method is designed. Finally, aiming at the uncertainty of behavior, a group behavior spread model based on random utility theory is established. Experiments on multiple real social network behavior spread datasets demonstrate the effectiveness of the proposed model in modeling and predicting behavior spread processes under uncertain environments.