2013
DOI: 10.5120/10059-4651
|View full text |Cite
|
Sign up to set email alerts
|

Agent for Documents Clustering using Semantic-based Model and Fuzzy

Abstract: Text clustering plays an important role in providing intuitive navigation and browsing mechanisms by organizing large sets of documents into a small number of meaningful clusters. Many fuzzy clustering algorithms, such as K-means, deal with documents as bag of words. The bag of words representation method used for these clustering is often unsatisfactory because it ignores the semantic of words. The proposed agent exploits WordNet ontology to create low dimensional feature vector which allows us to develop an … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2016
2016
2016
2016

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 31 publications
0
0
0
Order By: Relevance