Advances in cloud computing reshape the manufacturing industry into dynamically scalable, on-demand service oriented, and highly distributed cost-efficient business model. However it also poses challenges such as reliability, availability, adaptability, and safety on machines and processes across spatial boundaries. To address these challenges, this paper investigates a cloud-based paradigm of predictive maintenance based on mobile agent to enable timely information acquisition, sharing and utilization for improved accuracy and reliability in fault diagnosis, remaining service life prediction, and maintenance scheduling. In the new paradigm, a low-cost cloud sensing and computing node is firstly developed with embedded Linux operating system, mobile agent middleware, and open source numerical libraries. Information sharing and interaction is achieved by mobile agent to distribute the analysis algorithms to cloud sensing and computing node to locally process data and share analysis results. Comparing to the commonly used clientserver paradigm, the mobile agent approach enhances the system flexibility and adaptability, reduces raw data transmission, and instantaneously responds to dynamic changes of operations and tasks. Finally, the presented cloud-based paradigm of predictive maintenance is validated on a motor tested system.