Objetivos: La inteligencia artificial se ha establecido como una fuerza disruptiva en una amplia gama de industrias, incluida la auditoría. En la última década, la Inteligencia artificial ha demostrado su capacidad para automatizar tareas, identificar patrones complejos y mejorar la precisión de los procesos de auditoría. El propósito fundamental de este estudio resumir y exponer los estudios científicos de la investigación relacionada con la inteligencia artificial y la auditoría a nivel mundial.
Métodos: Se realizo un análisis bibliométrico que abarca un período de 37 años, desde 1984 hasta 2022. Para analizar y presentar los resultados se utilizó el paquete de análisis bibliométrico Biblioshiny, soportado en el programa R Studio, así como en el software VOSviewer, teniendo en cuenta 306 artículos y revisiones de literatura. Este enfoque cuantitativo nos permitió identificar patrones y tendencias en la investigación.
Resultados: Los resultados reflejan cambios importantes en el número de publicaciones anuales al registrar que el 70,91% de los documentos se publicaron en los últimos 7 años (2016 a 2022) y solo el 29,08% fue publicado en los 30 años comprendidos entre 1984 y 2015. Además, entre las 234 revistas científicas con publicaciones relacionadas, se identifican las ocho principales que concentran un 12.8% de las publicaciones y acumulan 12.5% de las citaciones. El clúster más numeroso, representado en color rojo, resaltando los 10 principales “audit”, “Audit Quality”, “Auditing”, “Big Data”, “Big Data Analytics”, “Blockchain”, “Computers”, “Data Mining”, “Decision Making”.
Conclusión: Esta investigación permite caracterizar la producción científica relacionada con la inteligencia artificial y la auditoria considerando la evolución temporal, características generales, redes de investigación con autores e instituciones, así como los clústeres temáticos de mayor relevancia en este campo de estudio.