Accurate monitoring of tetracycline (TC) residues in the environment is crucial for avoiding contaminant risk. Herein, a novel TC biosensor was facilely designed by integrating silver nanoparticles (Ag NPs) into the porphyrin metal−organic matrix (Ag@AgPOM) as a bifunctional electrochemiluminescence (ECL) probe. Different from the step-by-step synthesis of the coreaction accelerator and ECL emitter, the co-reaction accelerators Ag NPs were in situ-grown on the surface of 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) via a simple one-pot approach. Symbiotic Ag NPs on Ag@AgPOM formed an intimate interface and increased the collision efficiency of the ECL reaction, achieving the ECL enhancement of TCPP. Under the optimized conditions, the ternary ECL biosensor showed a wide linear detection range toward TC with a low detection limit of 0.14 fmol L −1 . Compared with the traditional HPLC and ELISA methods, satisfied analytical adaptability made this sensing strategy feasible to monitor TC in complex environmental samples.