2008
DOI: 10.48550/arxiv.0810.5288
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Aggregation of penalized empirical risk minimizers in regression

S. Gaïffas,
G. Lecué

Abstract: We give a general result concerning the rates of convergence of penalized empirical risk minimizers (PERM) in the regression model. Then, we consider the problem of agnostic learning of the regression, and give in this context an oracle inequality and a lower bound for PERM over a finite class. These results hold for a general multivariate random design, the only assumption being the compactness of the support of its law (allowing discrete distributions for instance). Then, using these results, we construct ad… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?