Previously, we presented a real-time method to measure blood flow perpendicular to the image plane of an intravascular ultrasound (IVUS) imaging system using a slow-time FIR (finite impulse response) filter bank. Any in-plane flow introduces error in the flow measurement using the filter bank algorithm. Simulations show that for a flow angle of +/- 10 degrees and velocities between 200 mm/s and 300 mm/s, the energy within the lowest frequency band filter is 6.92 to 7.80 times higher than for perpendicular flow in the worst case. We present a variation of the FIR filter bank algorithm, applying filter coefficients in a tilted fashion to slow-time signals (i.e., combining slow-time and fast-time). An appropriate tilt, which depends on the flow angle and velocity, corrects for the increased energy under the frequency bands. In this case, the energy under the lowest frequency band filter for an angle of +/- 10 degrees and velocities ranging from 200 mm/s to 300 mm/s is 2.09 to 2.94 times higher than for perpendicular flow, yielding greater than a factor of three improvement in the worst case over the original slow-time method. Moreover, the average energy over the vessel determined with the appropriate tilt is within 2-3% of the true value.