Given the expanding elderly population in the United States and the world, it is important to understand the processes underlying both natural and pathological age-related changes in the eye. Both the anterior and posterior segment of the eye undergo changes in biological, chemical, and physical properties driven by oxidative stress. With advancing age, changes in the anterior segment include dermatochalasis, blepharoptosis, thickening of the sclera, loss of corneal endothelial cells, and stiffening of the lens. Changes in the posterior segment include lowered viscoelasticity of the vitreous body, photoreceptor cell loss, and drusen deposition at the macula and fovea. Age-related ocular pathologies including glaucoma, cataracts, and age-related macular degeneration are largely mediated by oxidative stress. The prevalence of these diseases is expected to increase in the coming years, highlighting the need to develop new therapies that address oxidative stress and slow the progression of age-related pathologies.