The everyday environment brings to our sensory systems competing inputs from different modalities. The ability to filter these multisensory inputs in order to identify and efficiently utilize useful spatial cues is necessary to detect and process the relevant information. In the present study, we investigate how feature-based attention affects the detection of motion across sensory modalities. We were interested to determine how subjects use intramodal, cross-modal auditory, and combined audiovisual motion cues to attend to specific visual motion signals. The results showed that in most cases, both the visual and the auditory cues enhance feature-based orienting to a transparent visual motion pattern presented among distractor motion patterns. Whereas previous studies have shown cross-modal effects of spatial attention, our results demonstrate a spread of cross-modal feature-based attention cues, which have been matched for the detection threshold of the visual target. These effects were very robust in comparisons of the effects of valid vs. invalid cues, as well as in comparisons between cued and uncued valid trials. The effect of intramodal visual, cross-modal auditory, and bimodal cues also increased as a function of motion-cue salience. Our results suggest that orienting to visual motion patterns among distracters can be facilitated not only by intramodal priors, but also by feature-based cross-modal information from the auditory system.