In this study, unfired (cold) flow application was investigated in a single cylinder diesel engine with different combustion chamber geometries. In the experimental study, images obtained with the help of an endoscopic camera for different cycle points were instantly detected at constant speed. At the same time, velocity distributions of two different combustion chambers for different crank angles were analyzed in Ansys Forte software at before and after TDC. Thus, the flow distributions of different combustion chamber geometries in the chamber were compared. It can be said that regional swirl is formed in the newly developed combustion chamber geometry and develop in the chamber rather than the piston base compared to the standard combustion chamber. In addition, especially during the compression process, the squish movement of the bowl was observed with the movement of the piston. Here, it can be said that the newly developed chamber geometry is more effective than the standard bowl geometry. When the distribution of velocity vectors in the x-y and x-z axis were examined in numerical analysis, especially in the TDC position, it was determined that the interaction of the flow developed by the new bowl geometry with the fuel droplets was more evident.