Development of resistance to standard therapies complicates treatment of advanced prostate cancer. Alternative splicing variants of the androgen receptor (AR), e.g. AR-V7 can mediate resistance to AR-targeting substances abiraterone and enzalutamide. Semi-synthetic marine natural compound rhizochalinin decreases the expression of AR-V7 in human castration-resistant prostate cancer cells and thus resensitizes cells to enzalutamide.In the current study, we modified the structure of rhizochalin in order to determine structure-activity relationships (SAR) and optimize anticancer properties. Thus, we synthesized new 18-hydroxy- and 18-aminorhizochalins and its aglycones. All compounds exhibited anticancer properties in human castration-resistant prostate cancer cells, induced apoptosis and G2/M cell cycle arrest, and were capable of autophagy inhibition. SAR analysis showed an increase of pro-apoptotic activity in the row 18-amino < 18-hydroxy < 18-keto derivatives. In general, aglycones were more cytotoxic compared to glycosides. The sugar elimination was critical for the ability to suppress AR-signaling. Rhizochalinin (2) and 18-hydroxyrhizochalinin (4) were identified as the most promising derivatives and are promoted for further development.