Using ∼427 ks of Chandra observations, we present a study of shock heating and intracluster medium (ICM) cooling in the galaxy cluster RBS 797. We discover three nested pairs of weak shocks at roughly 50, 80, and 130 kpc from the center. The total energy associated with the shocks is ∼6 × 1061 erg, with the central active galactic nucleus (AGN) driving a pair of weak shocks every 20–30 Myr with a power P
sh ≈ 1046 erg s−1. Based on its morphology and age (∼30 Myr), the inner cocoon shock is associated with the four equidistant X-ray cavities previously discovered. From the thermodynamic analysis of the inner 30 kpc, we find evidence for ICM condensation into colder gas between and behind the X-ray cavities. The total AGN mechanical power (cavities and shocks) of 3.4 × 1046 erg s−1 can balance the ICM radiative losses, estimated as L
cool = 2.3 × 1045 erg s−1. By building plots of P
cav versus L
cool, P
shock versus L
cool, and P
tot versus L
cool for RBS 797 and 14 other galaxy clusters, galaxy groups, and elliptical galaxies where both cavities and shocks are detected, we verify that the most powerful outbursts are found in the strongest cooling systems. Ultimately, we observe that the mechanical power of the AGN exceeds the gas radiative losses by a factor that is different for FR I and FR II radio galaxies, being less than a few tens for FR Is (as RBS 797) and more than roughly 100 for FR IIs.