The research reviewed in this article provides examples of autoantibody-mediated receptor activation that likely contributes to disease. The classic example is Graves’ hyperthyroidism, in which autoantibodies activate the thyroid-stimulating hormone receptor resulting in overproduction of thyroid hormones. Other compelling examples come from the cardiovascular literature and include agonistic autoantibodies targeting the cardiac β1-adrenergic receptor, which are associated with dilated cardiomyopathy. Autoantibodies capable of activating α1-adrenergic receptors are associated with refractory hypertension and cardiomyopathy. A prominent example is preeclampsia, a hypertensive disease of pregnancy, characterized by the presence of autoantibodies that activate the major angiotensin receptor, AT1. AT1 receptor-activating autoantibodies are also observed in kidney transplant recipients suffering from severe vascular rejection and malignant hypertension. AT1 receptor-activating autoantibodies and antibodies that activate the endothelin-1 receptor, ETA, are prevalent in individuals diagnosed with systemic sclerosis. Thus, the presence of agonistic autoantibodies directed to G protein-coupled receptors has been observed in numerous cardiovascular disease states. Rapidly emerging evidence indicates that receptor-activating autoantibodies contribute to disease, and that efforts to detect and remove these pathogenic autoantibodies or block their actions will provide promising therapeutic possibilities.