By documenting how humans adapted to changes in their environment that are often much greater than those experienced in the instrumental record, archaeology provides our only deep-time laboratory for highlighting the circumstances under which humans managed or failed to find to adaptive solutions to changing climate, not just over a few generations but over the longue durée. Patterning between climatemediated environmental change and change in human societies has, however, been murky because of low spatial and temporal resolution in available datasets, and because of failure to model the effects of climate change on local resources important to human societies. In this paper we review recent advances in computational modeling that, in conjunction with improving data, address these limitations. These advances include network analysis, niche and species distribution modeling, and agent-based modeling. These studies demonstrate the utility of deep-time modeling for calibrating our understanding of how climate is influencing societies today and may in the future.climate change | archaeology | computational modeling | agent-based modeling