2021
DOI: 10.54139/revinguc.v28i1.18
|View full text |Cite
|
Sign up to set email alerts
|

Agrupamiento de Señales EEG con Rasgos Aprendidos Usando Autoencoder Profundo

Abstract: Este trabajo propone un algoritmo basado en autoencoders convolucionales como extractor de rasgos no supervisado, para hallar grupos o clusters de señales electroencefalográficas (EEG), como apoyo para el especialista médico para facilitar el diagnóstico de la condición de epilepsia. Se diseñaron tres autoencoders con señales de entrada de 4096×1, 2048×2 y 768×6, para analizar el efecto de la longitud de la señal sobre la representación latente generada por los autoencoders. Las representación latente se utili… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?