Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The field of interior home design has witnessed a growing utilization of machine learning. However, the subjective nature of aesthetics poses a significant challenge due to its variability among individuals and cultures. This paper proposes an applied machine learning method to enhance manufactured custom doors in a proper and aesthetic home design environment. Since there are millions of possible custom door models based on door types, wood species, dyeing, paint, and glass types, it is impossible to foresee a home design model fitting every custom door. To generate the classification data, a home design expert has to label thousands of door/home design combinations with the different colors and shades utilized in home designs. These data train a random forest classifier in a supervised learning context. The classifier predicts a home design according to a particular custom door. This method is applied in the following context: A web page displays a choice of doors to a customer. The customer selects the desired door properties, which are sent to a server that returns an aesthetic home design model for this door. This door configuration generates a series of images through the Unity 3D engine module, which are returned to the web client. The customer finally visualizes their door in an aesthetic home design context. The results show the random forest classifier’s good performance, with an accuracy level of 86.8%, in predicting suitable home design, marking the way for future developments requiring subjective evaluations. The results are also explained using a feature importance graphic, a decision tree, a confusion matrix, and text.
The field of interior home design has witnessed a growing utilization of machine learning. However, the subjective nature of aesthetics poses a significant challenge due to its variability among individuals and cultures. This paper proposes an applied machine learning method to enhance manufactured custom doors in a proper and aesthetic home design environment. Since there are millions of possible custom door models based on door types, wood species, dyeing, paint, and glass types, it is impossible to foresee a home design model fitting every custom door. To generate the classification data, a home design expert has to label thousands of door/home design combinations with the different colors and shades utilized in home designs. These data train a random forest classifier in a supervised learning context. The classifier predicts a home design according to a particular custom door. This method is applied in the following context: A web page displays a choice of doors to a customer. The customer selects the desired door properties, which are sent to a server that returns an aesthetic home design model for this door. This door configuration generates a series of images through the Unity 3D engine module, which are returned to the web client. The customer finally visualizes their door in an aesthetic home design context. The results show the random forest classifier’s good performance, with an accuracy level of 86.8%, in predicting suitable home design, marking the way for future developments requiring subjective evaluations. The results are also explained using a feature importance graphic, a decision tree, a confusion matrix, and text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.