This paper provides a bibliometric analysis of current research trends in the field of artificial intelligence (AI), focusing on key topics such as deep learning, machine learning, and security in AI. Through the lens of bibliometric analysis, we explore publications published from 2020 to 2024, using primary data from the Clarivate Analytics Web of Science Core Collection. The analysis includes the distribution of studies by year, the number of studies and citation rankings in journals, and the identification of leading countries, institutions, and authors in the field of AI research. Additionally, we investigate the distribution of studies by Web of Science categories, authors, affiliations, publication years, countries/regions, publishers, research areas, and citations per year. Key findings indicate a continued growth of interest in topics such as deep learning, machine learning, and security in AI over the past few years. We also identify leading countries and institutions active in researching this area. Awareness of data security is essential for the responsible application of AI technologies. Robust security frameworks are important to mitigate risks associated with AI integration into critical infrastructure such as healthcare and finance. Ensuring the integrity and confidentiality of data managed by AI systems is not only a technical challenge but also a societal necessity, demanding interdisciplinary collaboration and policy development. This analysis provides a deeper understanding of the current state of research in the field of AI and identifies key areas for further research and innovation. Furthermore, these findings may be valuable to practitioners and decision-makers seeking to understand current trends and innovations in AI to enhance their business processes and practices.