2022
DOI: 10.20944/preprints202212.0051.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

AI-based Detection of Aspiration for Video-endoscopy with Visual Aids in Meaningful Frames to Interpret the Model Outcome

Abstract: Disorders of swallowing often lead to pneumonia when material enters the airways (aspiration). Flexible Endoscopic Evaluation of Swallowing (FEES) plays a key role in the diagnostics of aspiration but is prone to human errors. An AI-based tool could facilitate this process. Recent non-endoscopic/non-radiologic attempts to detect aspiration using machine-learning approaches have led to unsatisfying accuracy and show black box characteristics. Hence, for clinical users it is hard to trust in these model decision… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 42 publications
0
0
0
Order By: Relevance