Non-orthogonal multiple access (NOMA) technique and unmanned aerial vehicles (UAVs) have been recognized as promising technologies for enabling the stringent requirements of the different network infrastructures expected for the next generation of wireless networks. In parallel, intelligent reconfigurable surfaces (IRSs) have been widely pointed out as an auspicious solution to further improve spectral efficiency, coverage range, and connectivity. By integrating IRS with UAV and NOMA schemes with multiple-input multiple-output (MIMO) it is possible to smartly improve the overall network performance. In order to explore some of these potentials, this paper provides a comprehensive discussion about the interplay of aerial IRS in MIMO-NOMA (AIRS-NOMA) networks, as well its architecture, functionality principles, and performance gains. In particular, attractive gains related to the data rate maximization, user fairness, energy efficiency, and coverage range are highlighted. Simulation results are provided to support our insightful discussions, in which it is revealed that the performance gains of AIRS-NOMA networks are superior when compared to terrestrial deployment. In addition, to guide new studies perspectives, it is addressed some issues and research opportunities associated with this potential integration.