Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Road safety remains a critical issue in contemporary society, where the sudden deterioration of road conditions due to weather-related natural phenomena poses significant risks. These abrupt changes can lead to severe safety hazards on the roads, making real-time monitoring and control essential for maintaining road safety. In this context, technological advancements, especially in sensor networks and intelligent systems, play a fundamental role in efficiently managing these challenges. This study introduces an innovative approach that leverages a sophisticated sensor platform coupled with a multi-agent system. This integration facilitates the collection, processing, and analysis of data to preemptively determine the appropriate chemical treatments for roads during severe winter conditions. By employing advanced data analysis and machine learning techniques within a multi-agent framework, the system can predict and respond to adverse weather effects swiftly and with a high degree of accuracy. The proposed system has undergone rigorous testing in a real-world environment, which has verified its operational effectiveness. The results from the deployment of the multi-agent architecture and its predictive capabilities are encouraging, suggesting that this approach could significantly enhance road safety in extreme weather conditions. Furthermore, the proposed architecture allows the system to evolve and scale over time. This paper details the design and implementation of the system, discusses the results of its field tests, and explores potential improvements.
Road safety remains a critical issue in contemporary society, where the sudden deterioration of road conditions due to weather-related natural phenomena poses significant risks. These abrupt changes can lead to severe safety hazards on the roads, making real-time monitoring and control essential for maintaining road safety. In this context, technological advancements, especially in sensor networks and intelligent systems, play a fundamental role in efficiently managing these challenges. This study introduces an innovative approach that leverages a sophisticated sensor platform coupled with a multi-agent system. This integration facilitates the collection, processing, and analysis of data to preemptively determine the appropriate chemical treatments for roads during severe winter conditions. By employing advanced data analysis and machine learning techniques within a multi-agent framework, the system can predict and respond to adverse weather effects swiftly and with a high degree of accuracy. The proposed system has undergone rigorous testing in a real-world environment, which has verified its operational effectiveness. The results from the deployment of the multi-agent architecture and its predictive capabilities are encouraging, suggesting that this approach could significantly enhance road safety in extreme weather conditions. Furthermore, the proposed architecture allows the system to evolve and scale over time. This paper details the design and implementation of the system, discusses the results of its field tests, and explores potential improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.