AI Fairness–From Machine Learning to Federated Learning
Lalit Mohan Patnaik,
Wenfeng Wang
Abstract:This article reviews the theory of fairness in AI-from machine learning to federated learning, where the constraints on precision AI fairness and perspective solutions are also discussed. For a reliable and quantitative evaluation of AI fairness, many associated concepts have been proposed, formulated and classified. However, the inexplicability of machine learning systems makes it almost impossible to include all necessary details in the modelling stage to ensure fairness. The privacy worries induce the data … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.